我的账户 7×24小时客服热线:400-829-7929 语言:
热门产品: 人参皂苷Rh2,人参皂苷Rg3,胡萝卜苷, 木犀草苷
产品分类
在线咨询
联系电话:
销售:
400-829-7929(7*24小时)
028-82633860
028-82633397 
028-
82633165
技术服务和产品定制:
028-82633987
在线服务:  
沈帅 
文静  点击这里给我发消息
贺丹丹  
点击这里给我发消息
      
文献信息

Proanthocyanidin–Aluminum Complexes Improve Aluminum Resistance and Detoxification of Camellia sinensis

期刊名:J. Agric. Food Chem.
文献编号:
文献地址: https://pubs.acs.org/doi/full/10.1021/acs.jafc.0c01689
发表日期:July 17, 2020
Abstract[Abstract Image]Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia sinensis) has high Al tolerance with abundant monomeric catechins in its leaves, especially epigallocatechin gallate (EGCG), and polymeric proanthocyanidins in its roots (rPA). The role of these polyphenols in the Al resistance of tea plants is unclear. In this study, we observed that these polyphenols could form complexes with Al in vitro, and complexation capacity was positively influenced by high solution pH (pH 5.8), polyphenol type (rPA and EGCG), and high Al concentration. In the 27Al nuclear magnetic resonance (NMR) experiment, rPA-Al and EGCG-Al complex signals could be detected both in vitro and in vivo. The rPA-Al and EGCG-Al complexes were detected in roots and old leaves, respectively, of both greenhouse seedlings and tea garden plants. Furthermore, in seedlings, Al accumulated in roots and old leaves and mostly existed in the apoplast in binding form. These results indicate that the formation of complexes with tea polyphenols in vivo plays a vital role in Al resistance in the tea plant.


Aluminum (Al) influences crop yield in acidic soil. The tea plant (Camellia
sinensis) has high Al tolerance with abundant monomeric catechins in
its leaves, especially epigallocatechin gallate (EGCG from Biopurify...