我的账户 7×24小时客服热线:400-829-7929 语言:
热门产品: 人参皂苷Rh2,人参皂苷Rg3,胡萝卜苷, 木犀草苷
产品分类
在线咨询
联系电话:
销售:
400-829-7929(7*24小时)
028-82633860
028-82633397 
028-
82633165
技术服务和产品定制:
028-82633987
在线服务:  
沈帅 
文静  点击这里给我发消息
贺丹丹  
点击这里给我发消息
      
文献信息

Changes in Mung Bean Protein Structure and Functionality After Freeze-Thaw Treatment and Addition of Vitexin-Loaded Phytosome Nanoparticles

期刊名: Springer Nature Link
文献编号:
文献地址: https://link.springer.com/article/10.1007/s11947-025-03767-z
发表日期:10 February 2025
This study evaluated mung bean protein isolate (MPI) modification after freeze-thaw treatment and the addition of vitexin-loaded phytosome nanoparticles (V-PHNs). The structural and functional properties of MPI and MPI treated with one freeze-thaw cycle (MPI-FT) before and after adding V-PHN, free vitexin (V), and phytosome nanoparticles without vitexin loading (PHN) were investigated. Results showed that freeze-thaw treatment did not affect protein electrophoresis patterns but induced a more disordered secondary protein structure with increased surface hydrophobicity. The partial unfolding of protein conformation after the freeze-thaw process significantly improved the foaming and emulsifying properties of MPI-FT but decreased its solubility. The MPI-FT had a larger particle size than MPI. The addition of V-PHN decreased MPI α-helix but increased random coil contents, indicating a more disordered protein structure. Fluorescence intensity and maximum emission wavelength changes indicated alterations in protein tertiary structures as a result of V and V-PHN additions. Decreasing fluorescence intensity and the intensity of SDS-PAGE protein bands demonstrated the binding of vitexin with protein hydrophobic regions. Vitexin improved the functional properties of MPI and MPI-FT. Adding vitexin as V-PHN enhanced the emulsifying properties and foaming stability of MPI and MPI-FT more than in the V form. The enhancement of protein functional properties by V-PHN was higher in MPI than in MPI-FT. A more ordered protein structure resulted from the interaction between vitexin and the partially unfolded MPI-FT structure. V-PHN addition increased the total phenolic content and DPPH radical scavenging activity of the protein system.
相关产品