我的账户 7×24小时客服热线:400-829-7929 语言:
热门产品: 人参皂苷Rh2,人参皂苷Rg3,胡萝卜苷, 木犀草苷
产品分类
在线咨询
联系电话:
销售:
400-829-7929(7*24小时)
028-82633860
028-82633397 
028-
82633165
技术服务和产品定制:
028-82633987
在线服务:  
沈帅 
文静  点击这里给我发消息
贺丹丹  
点击这里给我发消息
      
文献信息

Mechanism of Prunella vulgaris L. and luteolin in restoring Tfh/Tfr balance and alleviating oxidative stress in Graves' disease

期刊名:Phytomedicine
文献编号:
文献地址: https://www.sciencedirect.com/science/article/abs/pii/S0944711324004768
发表日期:September 2024
Background

The pathophysiology of Graves' disease (GD) involves imbalances between follicular helper T (Tfh) and follicular regulatory T (Tfr) cells, as well as oxidative stress (OS). Prunella vulgaris L. (Xia Ku Cao, XKC) and its primary bioactive compound, luteolin, are recognized for their potential in treating GD. Yet, the mechanism accounting for the immune-modulatory and antioxidant effects of XKC remains elusive.

Purpose

This study aims to evaluate the pharmacological effects and elucidate the underlying mechanism of XKC and luteolin in a GD mouse model induced by recombinant adenovirus of TSH receptor A subunit (Ad-hTSHR-289).

Methods

High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (HPLC-QTOF MS) was used to detect the constituents of XKC. The GD model was established through inducing female BALB/c mice with three intramuscular injections of Ad-TSHR-289. Thyroid function, autoantibody and OS parameters were measured by ELISA. Changes of Tfh cells and Tfr cells were detected by flow cytometry. RT-qPCR, Western Blotting, immunohistochemistry were used to explore the related molecular mechanisms.

Results

A total of 37 chemical components from XKC were identified by HPLC-QTOF MS, represented by flavonoids, steroids, terpenoids, and luteolin. XKC and luteolin reduced T4, TRAb levels and facilitated the recovery from thyroid damage in GD mice. Meanwhile, XKC and luteolin effectively alleviated OS by decreasing the levels of MDA, NOX2, 4-HNE, 8-OHdG, while increasing GSH level. Flow cytometry showed that XKC and luteolin restored the abnormal proportions of Tfh/Tfr and Tfh/Treg, and the mRNA levels of IL-21, Bcl-6 and Foxp3 in GD mice. In addition, XKC and luteolin inhibited PI3K, Akt, p-PI3K and p-Akt, but activated Nrf2 and HO-1.

Conclusion

XKC and luteolin could inhibit the development of GD in vivo by rebalancing Tfh/Tfr cells and alleviating OS. This therapeutic mechanism may involve the Nrf2/HO-1 and PI3K/Akt signaling pathways. Luteolin is the main efficacy material basis of XKC in countering GD. For the first time, we revealed the mechanism of XKC and luteolin in the treatment of GD from the perspective of autoimmune and OS.