我的账户 7×24小时客服热线:400-829-7929 语言:
热门产品: 人参皂苷Rh2,人参皂苷Rg3,胡萝卜苷, 木犀草苷
产品分类
在线咨询
联系电话:
销售:
400-829-7929(7*24小时)
028-82633860
028-82633397 
028-
82633165
技术服务和产品定制:
028-82633987
在线服务:  
沈帅 
文静  点击这里给我发消息
贺丹丹  
点击这里给我发消息
      
文献信息

Specneuzhenide improves bleomycin-induced pulmonary fibrosis in mice via AMPK-dependent reduction of PD-L1

期刊名:Phytomedicine
文献编号:
文献地址: https://www.sciencedirect.com/science/article/abs/pii/S0944711323006761
发表日期:June 2024
Background

Pulmonary fibrosis (PF) is an escalating global health issue, characterized by rising rates of morbidity and mortality annually. Consequently, further investigation of potential damage mechanisms and potential preventive strategies for PF are warranted. Specnuezhenide (SPN), a prominent secoiridoid compound derived from Ligustrum lucidum Ait, exhibits anti-inflammatory and anti-oxidative capacities, indicating the potential therapeutic actions on PF. However, the underlying mechanisms of SPN on PF remain unclear.

Purpose

This work was aimed at investigating the protective actions of SPN on PF and the potential mechanism.

Methods

In vivo, mice were administrated with bleomycin (BLM) to establish PF model. PF mice were treated with SPN (45/90 mg/kg) by gavage. In vitro, we employed TGF-β1 (10 ng/mL)-induced MLE-12 and PLFs cells, which then were treated with SPN (5, 10, 20 µM). DARTS assay, biofilm interference experiment and molecular docking were performed to investigate the molecular target of SPN.

Results

In vivo, we found SPN treatment improved survival rate, alleviated pathological changes through reducing BLM-induced extracellular matrix (ECM) deposition, as well as BLM-induced epithelial-mesenchymal transition (EMT). In vitro, SPN inhibited EMT and lung fibroblast transdifferentiation. Mechanistically, SPN activated the AMPK protein to decrease the abnormally high level of PD-L1. Furthermore, the compound C, known as an AMPK inhibitor, exhibited a significant hindrance to the inhibition of SPN on TGF-β1-caused fibroblast transdifferentiation and proliferation. This outcome could be attributed to the fact that compound C could eliminate the inhibitory effects of SPN on PD-L1 expression. Interestingly, DARTS assay, biofilm interference experiment and molecular docking results all indicated that SPN could bind to AMPK, which suggested that SPN might be a potential agonist targeting AMPK protein.

Conclusion

Altogether, the results in our work illustrated that SPN promoted AMPK-dependent reduction of PD-L1 protein, contributing to the inhibition of fibrosis progression. Thus, SPN may represent a potential AMPK agonist for PF treatment.