我的账户 7×24小时客服热线:400-829-7929 语言:
热门产品: 人参皂苷Rh2,人参皂苷Rg3,胡萝卜苷, 木犀草苷
产品分类
在线咨询
联系电话:
销售:
400-829-7929(7*24小时)
028-82633860
028-82633397 
028-
82633165
技术服务和产品定制:
028-82633987
在线服务:  
沈帅 
文静  点击这里给我发消息
贺丹丹  
点击这里给我发消息
      
文献信息

Identification of potential inhibitors targeting DNA adenine methyltransferase of Klebsiella pneumoniae for antimicrobial resistance management: a structure-based molecular docking study

期刊名:Advancements in Life Sciences
文献编号:
文献地址: https://www.submission.als-journal.com/index.php/ALS/article/view/2239
发表日期:Vol 10, No 4 (2023)
Background: Klebsiella pneumoniae is an important opportunistic pathogen that frequently causes nosocomial infections. Notably, this bacterium has emerged as a major problem in hospital settings because of its acquisition of resistance to carbapenems. The majority of antibiotics act by targeting crucial pathways within bacterial cells. However, due to the development of resistance mechanisms, the efficiency of these antibiotics has decreased. Therefore, this study focused on a putative protein (DNA adenine methyltransferase; Dam) found in K. pneumoniae that encompasses a DNA methylation protein domain, indicating a novel potential target for pharmacological intervention. DNA methylation affects bacterial virulence attenuation.

Methods: In the unavailability of a 3D structure for Dam protein in protein database, a 3D model was generated using SWISS-MODEL server and validated using computational tools. Following that, screening was performed against the Dam protein using a set of 2706 phytochemicals obtained from the ZINC database using PyRx0.8. ProTox-II platform was used to predict the physicochemical properties and various toxicity endpoints.

Results: Among the screened compounds, ZINC4214775, ZINC4095704, and ZINC4136964 had higher binding affinity for the Dam and interacted with its active site residues. The computational analyses of these three identified hits indicate that their predicted properties were within an acceptable range for evaluating toxicity. In addition, a toxicity radar chart showed that these hits were within an acceptable range.

Conclusions: These compounds have the potential to act as Dam inhibitors and could be investigated further for managing antimicrobial resistance in K. pneumoniae.